SOX2 regulates YAP1 to maintain stemness and determine cell fate in the osteo-adipo lineage.
نویسندگان
چکیده
The osteoblastic and adipocytic lineages arise from mesenchymal stem cells (MSCs), but few regulators of self-renewal and early cell-fate decisions are known. Here, we show that the Hippo pathway effector YAP1 is a direct target of SOX2 and can compensate for the self-renewal defect caused by SOX2 inactivation in osteoprogenitors and MSCs. Osteogenesis is blocked by high SOX2 or YAP1, accelerated by depletion of either one, and the inhibition of osteogenesis by SOX2 requires YAP1. SOX2 favors adipogenesis and induces PPARγ, but adipogenesis can only occur with moderate levels of YAP1. YAP1 induction by SOX2 is restrained in adipogenesis, and both YAP1 overexpression and depletion inhibit the process. YAP1 binds β-catenin and directly induces the Wnt antagonist Dkk1 to dampen pro-osteogenic Wnt signals. We demonstrate a Hippo-independent regulation of YAP1 by SOX2 that cooperatively antagonizes Wnt/β-catenin signals and regulates PPARγ to determine osteogenic or adipocytic fates.
منابع مشابه
Yap1 is dispensable for self-renewal but required for proper differentiation of mouse embryonic stem (ES) cells.
Yap1 is a transcriptional co-activator of the Hippo pathway. The importance of Yap1 in early cell fate decision during embryogenesis has been well established, though its role in embryonic stem (ES) cells remains elusive. Here, we report that Yap1 plays crucial roles in normal differentiation rather than self-renewal of ES cells. Yap1-depleted ES cells maintain undifferentiated state with a typ...
متن کاملDeregulation of Stemness-Related Genes in Endometriotic Mesenchymal Stem Cells: Further Evidence for Self-Renewal/Differentiation Imbalance
Background: Any irregularities in self-renewal/differentiation balance in endometriotic MSCs can change their fate and function, resulting in endometriosis development. This study aimed to evaluate the expression of OCT4 transcripts (OCT4A, OCT4B, and OCT4B1), SOX2, and NANOG in endometriotic MSCs to show their aberrant expression and to support self-renewal/differentiation imbalance in these c...
متن کاملPericyte-Like Progenitors Show High Immaturity and Engraftment Potential as Compared with Mesenchymal Stem Cells
Mesenchymal stem cells (MSCs) and pericyte progenitors (PPs) are both perivascular cells with similar multipotential properties regardless of tissue of origin. We compared the phenotype and function of the 2 cell types derived from the same bone-marrow samples but expanded in their respective media - pericyte conditions (endothelial cell growth medium 2 [EGM-2]) for PPs and standard medium (mes...
متن کاملMechanisms Underlying the Osteo- and Adipo-Differentiation of Human Mesenchymal Stem Cells
Human mesenchymal stem cells (hMSCs) are considered a promising cell source for regenerative medicine, because they have the potential to differentiate into a variety of lineages among which the mesoderm-derived lineages such adipo- or osteogenesis are investigated best. Human MSCs can be harvested in reasonable to large amounts from several parts of the patient's body and due to this possible ...
متن کاملLinc-ROR and its spliced variants 2 and 4 are significantly up-regulated in esophageal squamous cell carcinoma
Objective(s): Similar characteristics of molecular pathways between cellular reprogramming events and tumorigenesis have been accentuated in recent years. Reprogramming-related transcription factors, also known as Yamanaka factors (OCT4, SOX2, KLF4, and c-MYC), are also well-known oncogenes promoting cancer initiation, progression, and cellular transformation into cancer stem cells. Long non-co...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cell reports
دوره 3 6 شماره
صفحات -
تاریخ انتشار 2013